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In this article, we present a novel forensic speaker recognition system that provides the capability to perform 

comparisons using both ‘traditional’ forensic phonetic parameters and ‘automatic’ spectral features in a semi- or fully 

automatic way. We evaluate this approach with simulated and real forensic case data in German, which ranges from 

high quality laboratory audio data to real telephone intercepts. We examine how the forensic expert can use his or her 

knowledge of the linguistic and phonetic content of the speech and combine it with ‘automatic’ acoustic analysis of the 

speech. This approach is shown to provide a level of validation and safeguard against misleading or incorrect 

identification results. We demonstrate that processing phonetic data will be in many ways complementary and will offer 

insights into the voice comparison analysis that the classical automatic methods cannot. 

 

 

INTRODUCTION 

In recent years there has been significant academic and 

commercial research interest in the application of the so 

called ‘automatic’ speaker recognition approaches to 

forensic speaker comparison tasks. These automatic 

approaches consist of providing audio files from the 

suspected speaker as well as the questioned recordings 

or traces to the software system, and the extraction of 

speaker-specific features and their modeling and 

comparison is performed by the software. Often this 

process runs autonomously, and essentially beyond 

providing the appropriate files, the user has little control 

or oversight over what happens within the processing.  

 

However, in many countries, the vast majority of 

forensic speaker comparison casework is performed by 

forensic phoneticians who have a lot of experience and 

knowledge in voice comparison and a good 

understanding of the legal requirements in their area [1]. 

Many of these experts are currently ‘out of the loop’ in 

a fully automatic analysis. They may want to include 

automatic methods and make their speaker recognition 

analysis more objective using likelihood ratios and 

evaluating system performance, but do not have any 

straightforward means of doing so in a way that meets 

the necessary requirements for the transparency of such 

a system.   

 

There is also a requirement for validation and testing. 

For instance, the automatic systems may depend on the 

assumptions made by developers, which may not always 

hold, and the corpora used to develop and test the 

systems may be different and often not representative of 

forensic conditions. It is thus useful to both have a 

convenient way of performing system evaluations of 

automatic systems that are adapted to the expert’s 

specific casework conditions and to be able to form a 

second opinion based on phonetics-based information, 

while keeping constant as much as possible the same 

modeling techniques and statistical (Bayesian) 

evaluation framework as in classical automatic speaker 

recognition.  

 

At the German Bundeskriminalamt (BKA), a system 

named SPES (Sprechererkennungssystem `speaker 

recognition system’) had been developed systematically 

since 2005 in cooperation with the Technical University 

in Koblenz (Prof. Broß) in which all the components of 

the system have been documented and tested [2]. What 

is not included in SPES is a way of including semi-

automatic procedures that are based on acoustic-

phonetic information. 

 

We have used a forensic speaker recognition system 

called ‘VOCALISE’ (Voice Comparison and Analysis 

of the Likelihood of Speech Evidence) that provides the 

capability to perform comparisons using both 

‘traditional’ forensic phonetic parameters and 

‘automatic’ spectral features in a semi- or fully 

automatic way [3]. VOCALISE seeks to form a bridge 

between traditional forensic phonetics-based speaker 

recognition and forensic automatic speaker recognition 

and provides a coherent means of expressing the 

combined results. Some aspects in the automatic 

speaker recognition methods of both the BKA-SPES 

system and of VOCALISE were based upon the 

development of the system ASPIC (Automatic Speaker 

Individualisation by Computer) in which the second 

author has been involved ([4] for details). 
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1 VOCALISE SPEAKER RECOGNITION 

SYSTEM 

The VOCALISE speaker recognition software is 

capable of comparing phonetic and automatic features 

from a test audio file from a target speaker against 

features from an audio file of a suspected speaker or an 

entire list of suspected speakers, and produces a 

likelihood score for each comparison. VOCALISE was 

designed to allow the forensic practitioner to 

statistically model and compare long-term formant 

information and formant dynamics, along with spectral 

features like Mel Frequency Cepstral Coefficients 

(MFCCs) [5, 6]. It provides the capability to perform 

comparisons using ‘automatic’ spectral features, 

‘traditional’ forensic phonetic parameters as well as 

‘user’‐ provided features. 

 

2 BRIEF DESCRIPTION OF THE VOCALISE 

USER INTERFACE 

In developing VOCALISE, particular attention was 

given to its capability of providing a common 

methodological platform for both classical automatic 

and phonetic speaker recognition. Three operation 

modes called ‘spectral’, ‘user’, and ‘auto phonetic’ are 

currently included in VOCALISE (Fig. 1). Spectral 

refers to the automatic extraction of the kind of features 

that are most commonly used in automatic speaker and 

speech recognition (currently MFCCs). User (-defined) 

refers to the option that lets the users use their own 

stream(s) of values which can be manually measured, 

labelled, or corrected, such as formant frequencies, 

fundamental frequency, or durations of sounds, syllables 

or sub-syllabic constituents (units relevant to tempo and 

rhythm), or even auditory features. Auto-phonetic refers 

to the automatic (unsupervised) extraction of phonetic 

features (currently formants F1 to F4 selected in any 

combination for analysis). VOCALISE allows for 

normalisation and extraction of dynamic information, 

Gaussian Mixture Modeling (GMM), as well as the 

creation of statistical models for populations using 

universal background models (UBMs) for phonetic, 

spectral or user-defined features interchangeably. 

 

The VOCALISE main page contains a visual display of 

the waveform of any of the audio and comparison files, 

which can be selected and played. The playback 

capability allows to play, pause and thus listen to the 

files that undergo analysis and there is the capability of 

zooming and navigating though the signal. The lower 

left window of the main page shows one or (in this case) 

several comparison files that can be moved into this 

window through a simple drag-and-drop action. Also 

shown in this window is the length of any of the 

comparison files and the respective likelihood score that 

is obtained after an analysis file (which can be dropped 

into the signal display window) has been compared to a 

comparison file. In order to carry out entire system tests 

such as n reference recordings compared against m 

traces, VOCALISE can time-efficiently output result 

files in CSV (comma separated values) format that 

contain the results for all the comparisons. 

 

The lower-central section of the VOCALISE main page 

shows various parameters that can be selected by the 

user, including the number of Gaussians and the number 

of features (MFCC coefficients). It also allows the user 

to select a folder in which the files to be used for 

training a UBM can be found. 

 

 
 

 

Figure 1: Display of VOCALISE main page (upper) and 

the Advanced Settings page (lower) during application 

of the case-data system test (presented in Section 4). 

 

Further analysis parameters can be found on the 

Advanced Settings page. It includes the option of 

involving derivatives of the feature vectors like delta 

and delta-delta coefficients, different channel 

normalisation methods, different numbers of train 

cycles for GMM modelling, symmetric testing 

(inverting the status of training and testing files and 

taking the average score from both perspectives), and 

different MFCC settings (frequency range, # of filter 

banks, inclusion of energy coefficient). There is also the 
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option of specifying a net duration value below which 

audio files are not included in the analysis because they 

are too short (which has to be tested empirically). There 

are very similar control parameters for each both the 

autophonetic and user modes. For instance, it is possible 

to use the derivative ‘delta’ or ‘delta-delta’ parameters 

to phonetic features which will allow the user to model 

to some extent formant dynamic information. Settings 

like mean normalisation, applicable to spectral 

comparisons, are also extended to the two other modes. 

3 EXPERIMENTS WITH THE POOL 2010 

RESEARCH CORPUS: LONG-TERM 

FORMANTS 

As discussed in the introduction, an important aspect in 

the design of VOCALISE is its capability of not only 

being able to carry out established automatic speaker 

recognition methods but of also being able to process 

phonetic features such as formant frequencies. This 

section reports on experiments in which aspects of 

phonetic data processing with VOCALISE are explored 

systematically.  

3.1 Description of the data 

The experiments are based on the research corpus “Pool 

2010”, which contains laboratory recordings of 100 

male adult speakers of German. It was compiled at the 

Bundeskriminalamt, Germany in order to investigate the 

intra-speaker and inter-speaker variation characteristics 

of a number of forensic-phonetic features (see [7, 8] for 

overview). 

 

Two recordings each from 22 speakers were used, 

resulting in 22 same-speaker comparisons and 462 

different-speaker comparisons. Recordings from 22 

other speakers were used to train a UBM. The speakers 

were adult males and they spoke in a slight regional 

accent of the West-Central variety of German. The net 

speech durations (i.e. speech with silences and pauses 

removed) of the audio files (analysis, comparison, and 

UBM) ranged from about 20 to 40 seconds. The 

common factor was the amount of pure vocalic long-

term formant material (to be explained below), which 

was very closely around 10 seconds for each recording. 

The recordings were in microphone quality but were 

later transmitted through authentic mobile-phone 

connections and re-recorded; it is those telephone-

transmitted versions that were analysed here. The 

recordings were not non-contemporary, but they were 

separated by other recordings and events within a large 

master recording session. The material from Pool 2010 

was intentionally selected in a way that a certain 

stylistic difference occurred: the speech in the test set 

was slightly more spontaneous than the one in the 

training set and in the UBM set. In the test set, subjects 

spoke freely about their experiences and the 

observations they made during the recording, whereas in 

the training set and the UBM set they provided a picture 

description in which they had to avoid certain key 

words. When stylistic differences occur in forensic case 

material, it is often in the same direction, i.e. with the 

test recording (i.e. the one from the questioned speaker) 

being more spontaneous than the training recording (i.e. 

the one from the suspect). However, the amount of 

stylistic mismatch found in this corpus data is smaller 

and the overall technical quality much better than what 

is most commonly found in real forensic cases. 

Therefore, speaker recognition performance is expected 

to be much better than in true forensic case material. 

The evaluations that are carried out based on this 

material will be referred to as the lab-data system test. 

3.2 Spectral Comparisons 

First of all, the lab corpus material described here was 

analysed within the Spectral mode of VOCALISE. The 

features used in the Spectral mode are MFCC (Mel 

Frequency Cepstral Coefficients) and are modelled 

using a GMM-UBM approach, which is the case for all 

the modes in VOCALISE. The analysis settings are 

those shown in Fig. 1. The EER (Equal Error Rate) 

obtained from this test was as low as 0.1%. This is a 

very good result, but it needs to be considered that this 

result is based on good-quality speech data and might 

deteriorate in real forensic case data, as will be shown in 

Section 4. A Tippett-plot of the results is shown in Fig. 

2. 

 

 
Figure 2: Tippett plot of the lab-data system test using 

Bio-Metrics software [9]. The x-axis shows the log10-

likelihood scores calculated with VOCALISE and the y-

axis shows the cumulative proportions of the two 

distributions. The curve descending from upper left (in 

red) shows the scores for the different-speaker 

comparisons, the one ascending towards to the upper 

right (in blue) shows the scores of the same-speaker 

comparisons. 
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3.3 Long-term formant analysis using user-provided 

features 

Secondly, the lab corpus material was analysed with 

Long-Term Formants (to be abbreviated as LTF). LTF-

analysis has been first introduced into forensic 

phonetics by Nolan & Grigoras [10]. The formant 

frequencies of different vowel categories have been 

shown to carry important speaker-specific information 

[11]. LTF analysis is a particular method of forensic 

vowel-formant analysis in which formant frequencies 

are collected during the course of a recording without 

segmentation into different vowel categories. Since LTF 

analysis effectively averages across different vowels it 

is expected to have similar acoustic properties as the 

central vowel schwa and hence to be an acoustic 

correlate of individual differences in the length of the 

vocal tract [12]. 

 

In the methodological version of LTF analysis used for 

the present study, the speech files were labelled, using 

Praat software [13], in a way that only vowels with 

visible F1, F2 and F3 (first, second and third formant) 

are used for the analysis. The total duration of these 

vowel-only portions of the signal was very closely 

around 10 seconds for each of the 66 audio files used in 

the experiments (22 test, 22 training, 22 UBM). These 

vowel-only portions were concatenated using Praat’s 

Extract function and uploaded into the software 

Wavesurfer [14]. Within Wavesurfer, formant tracking 

was applied using Wavesurfer’s default settings for 

formant tracking and any errors by the tracker were 

corrected manually.
1
 The procedure is illustrated in Fig. 

3. 

 

  
 

Figure 3: Illustration of a section of an audio recording 

after concatenated vowel-only portions have been 

uploaded into Wavesurfer.  The display shows a 

spectrogram (time on x-axis; frequency on y-axis) with 

                                                           
1 Wavesurfer allows for a convenient and time-efficient 

correction of formant frequency tracking errors. Praat does not 

have an option for correcting formant tracks, otherwise the 

entire analysis would have stayed within Praat and data 

transfer between software packages would have been 

unnecessary. Some difficulties with the Wavesurfer formant 

tracker have been reported when formants are close to each 

other [15], but manual correction should be able to 

accommodate such problems. Wavesurfer does not provide a 

graphical display of the formant bandwidths (to be explained 

later in this text) and therefore no manual correction of 

potential errors in bandwidth determination was carried out. 

overlaid and manually corrected tracks of (from bottom 

to top) Formant 1 to 4 (F4 is not used in the analysis).  

 

The corrected formant tracks are stored in Wavesurfer 

as text files with the extension .frm. These text files 

contain eight columns, the first four containing the 

formant frequencies F1, F2, F3, F4, and the remaining 

four containing the formant bandwidths B1 to B4. (F4 

and B4 will not be used here due to their close 

proximity to the upper boundary of the telephone 

passband.) The mode within VOCALISE that is used 

for the analysis of the hand-corrected LTF data is called 

the User mode. This is meant to indicate that within this 

mode of the software, the user has the opportunity to 

upload any numerical input that is stored in a text file 

and is arranged in columns. In this analysis, the input 

originates from formant tracking within Wavesurfer, but 

in other analyses it could be input from any other 

software and other phonetic parameters such as 

fundamental frequency or syllable duration values. In 

the Advanced Settings (cf. Fig.1), no delta features and 

no channel normalisation has been applied.  

 

In these tests some of the analysis parameters were 

varied systematically.  One of the parameters that were 

varied is the number of Gaussians. Whereas there is 

ample experience with the number of Gaussians 

necessary in automatic speaker recognition (see [4], 

including further references], there is so far only limited 

experience with the GMM-modeling of LTF data [16, 

17]. In order to illustrate the situation, Fig. 4 shows an 

example of the LTF-distribution of the recording of a 

speaker. 
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Figure 4: Example of the distributions (probability 

density functions) of the frequency values of F1 

(leftmost, in blue), F2 (center, red) and F3 (rightmost, 

green) of the recording of a speaker. 

 

In the example shown in Fig. 4, the distributions of 

formants F1 and F3 are simpler than the one of F2. With 

F2 it is clear that a single-Gaussian model would not be 

enough to capture the data, and that a Gaussian Mixture 

Model (GMM) would be appropriate. For F1and F3, a 
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single-Gaussian model might be more adequate than for 

F2, but the distributions of F1 and F3 shown here are 

not entirely regular either and could also benefit from 

modeling with GMM. Furthermore, there are examples 

of speakers (not shown) where F1 and F3 have a more 

complex distribution than the ones shown here. Based 

on examples like this, the hypothesis emerges that 

Gaussian Mixture Modeling, as opposed to modeling 

with single Gaussians, is of benefit for the voice 

comparison process. If, according to this hypothesis, 

more than one Gaussian is useful, it has to be studied 

how many Gaussians are necessary. Perhaps in order to 

capture distributions such the one of F2 shown in Fig. 4 

not very many Gaussians are required. Becker et al. 

[17], based on a section of Pool 2010 different from the 

one here, reports that 8 Gaussians are necessary to 

obtain the best results, but perhaps the full performance 

is reached at even lower values.
2
 

 

Another parameter that was varied is the inclusion or 

non-inclusion of the formant bandwidths. Formant 

bandwidths can be measured manually “by noting the 

frequencies that are 3 dB below the frequency with the 

maximum amplitude [12, p. 88]”, but formant 

bandwidths can also be determined automatically within 

LPC analysis (as it is performed here using 

Wavesurfer), which might not yield exactly the same 

results. In some of the early studies on speaker 

identification, formant bandwidths have been shown to 

carry some speaker-discriminative information [16]. 

Becker et al. [16] showed some improvement of speaker 

recognition performance if the bandwidths were 

included (based on the same data as in Becker et al. 

[17]). 

 

In the experiments reported here, the number of 

Gaussians was varied from 1 to 8. This series of eight 

different numbers of Gaussians was tested in two sets, 

one based on F1, F2, F3 and one based on F1, F2, F3 

plus B1, B2, B3, i.e. the first set contained the 

frequencies of the first three formants, whereas the 

second set also contained their bandwidths. The results 

expressed in terms of EER are shown in Fig. 5. 

 

                                                           
2 It should be mentioned that Fig. 4 simplifies the situation 

insofar as the actual modeling of the formant data in 

VOCALISE is multivariate, i.e. each feature vector is situated 

in three-dimensional space when F1, F2, F3 are used or in six-

dimensional space when also the bandwidths are included. 

What is shown in Fig. 4, instead, are three univariate 

distributions. 

 
 

Figure 5: Results of the lab-data system test with the 

User mode (hand-corrected Long-Term Formants). 

Results in terms of Equal Error Rate (EER, y-axis), 

when the number of Gaussians is varied from 1 to 8 (x-

axis) in two series, one with F1, F2, F3 (circles, blue) 

and one also including the bandwidths (squares, red). 

 

The results shown in Fig. 5 are straightforward. Firstly, 

every step-by-step increase from one to three Gaussians 

leads to an improvement of speaker recognition 

performance, but from three Gaussians on, there is 

practically no improvement. Hence, three Gaussians are 

sufficient to model the LTF data for voice comparison 

purposes. Secondly, including the bandwidths increases 

performance. There is fairly little interaction with the 

number-of-Gaussians parameter, i.e. a similar 

improvement occurs for all number-of-Gaussians. 

 

3.4 Long-term formant analysis using VOCALISE’s 

automatic phonetic feature extraction 

So far, the lab-data system test (i.e. data based on the 

Pool 2010 corpus) was carried out with the Spectral 

mode (automatic speaker recognition) and the User 

mode (LTF analysis based on manually corrected 

formants).  It was also carried out with a third mode of 

VOCALISE, which is called the Autophonetic mode. 

The intention behind the Autophonetic mode is to offer 

automatic feature extraction methods for features that 

belong to the domain of acoustic phonetics and that are 

used routinely by forensic phoneticians. Currently, the 

Autophonetic mode offers the capability for LTF 

analysis, but further developments are possible. Fig. 6 

shows the main page of the user interface for the 

Autophonetic mode. The difference to Fig. 1 lies in the 

part where boxes can be checked for the formants that 

are intended to be included in the analysis. The 

technology behind the automatic formant extraction is 

based on the Praat software. The formant bandwidths 

are currently not included. 
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Figure 6: Display of VOCALISE main page during 

application of the lab-data system test with the 

Autophonetic mode (automatic LTF-analysis). 

Using the Autophonetic mode, a variety of different 

system tests were carried out. As shown in Fig. 6, the 

Formant frequencies F1, F2, F3 were used as features. 

The number of Gaussians was varied systematically as 

in the LTF tests before, but this time the number was 

increased up to 16. The remaining settings are the same 

as in the User mode. The results are shown in Fig. 7. 

 

 

Figure 7: Results of the lab-data system test based on 

the formant frequencies F1, F2, F3. Results from the 

Autophonetic mode (automatically extracted Long-

Term Formants; shown with green triangles). This is 

compared to the results from the User mode (hand- 

corrected Long-Term Formants) repeated from Fig. 5 

and supplemented with tests from 9 to 16 Gaussians. 

The results in Fig. 7 show that the Autophonetic mode 

needs more number of Gaussians until the performance 

stabilizes. With the User mode stabilization occurred at 

three Gaussians, here it is at eight. However, beyond 

that point, the performance of the Autophonetic mode is 

practically the same as the one of the User mode. What 

is interesting about that result is, first, that two fairly 

different ways of arriving at Long-Term Formants yield 

such similar outcome in terms of EER. Secondly, the 

results show that a fully automated system for 

measuring the formant frequencies gives the same 

speaker recognition result as a system that is based on 

manually selecting vocalic speech portions and 

correcting formant tracks. Whether this result carries 

over to the handling of real case data remains to be 

studied in the future. The advantage of the User mode 

that stability is reached with lower numbers of 

Gaussians compared to the Autophonetic mode is only 

marginally relevant.  

4 EXPERIMENTS WITH REAL CASE DATA 

The VOCALISE system was used in analysing 

anonymised case data collected from telephone 

interception recordings in Germany. This will be 

referred to as the case-data system test. Two non-

contemporary recordings each from 22 speakers were 

used, which provided 22 same-speaker comparisons and 

462 different-speaker comparisons. The speakers were 

adult males and speaking German, some of whom had 

regional or ethnic accent. The net speech durations of 

the audio files analysed ranged from about 20 to 60 

seconds. The speech style in the recordings was 

completely natural and the recording conditions were 

largely similar with no significantly discernible 

difference in channel distortion. It is reasonable to 

consider samples to come from broadly matching 

conditions. Nevertheless, each recording contained 

speech of varying degrees of vocal loudness, 

emotionality, background noise, distortions, etc., 

making the voice comparisons a challenging and a fully 

‘forensically realistic’ task. In addition to the 22 training 

recordings (referred to as comparison files in the 

VOCALISE software) and the 22 test recordings 

(referred to as analysis files), natural telephone 

recordings from 25 other male German speakers of 

about one minute net duration each were used to train a 

UBM (Universal Background Model). 

 

These data were analysed with the Spectral mode of 

VOCALISE. Exactly the same analysis settings were 

used here as in the lab-data system test, i.e. those shown 

in Fig. 1. Results are shown in Fig. 8. 

 

As indicated in the DET plot and detectible from the 

Tippett plot (intersection between same-speaker and 

different-speaker curves), the EER of the case-data 

system test was at 11.3%. This is a reasonable value 

compared to other system tests on telephone-

interception-type forensic material using systems based 

upon the use of MFCC features within a GMM-UBM 

approach [19].
3
  

 

                                                           
3 As can be seen in the Tippett plot here or in Fig. 2, the scores 

are not yet calibrated. Calibration is possible, for example 

within in the Bio-Metrics software, if further development 

data are provided or if a cross-validation procedure is used 

([20] for illustration of the methodology). 
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Figure 8: DET plot (upper) and Tippett plot (lower) of 

the case-data system test using Bio-Metrics software. In 

the DET-plot, false identification rate is plotted on the 

x-axis and false rejection rate on the y-axis. Tippett 

plots were explained in Fig. 2. 

  

5 SELECTIVE PROCESSING (SPARSE) 

In its recent development, VOCALISE has been 

extended by a component called SPARSE (Selective 

Processing of Annotated Regions of Speech 

Efficiently). When SPARSE is enabled, the spectral, 

user, and auto phonetic methods described above are 

region-conditioned to speech sounds, speech styles or 

other subsections of recordings that are labeled by the 

user. These labels in the form of Praat TextGrids or 

other formats are recognised by VOCALISE and all 

training and testing is limited to the regions that are of 

interest.  

 

As a first test, SPARSE has been applied to the speech 

data and user-provided formant measurements described 

in Section 3.3. In contrast to the methods in Section 3.3, 

the formants were not extracted across vowels but were 

limited to hand-labeled vowels. In the speech data, the 

three vowels (in SAMPA notation) /a/ (short/lax a-

vowel), /I/ (short/lax i-vowel) and /@/ (schwa) occurred 

most frequently, therefore SPARSE analysis 

concentrated on these vowel categories. Using F1, F2, 

and F3 and varying the number of Gaussians, the results 

showed that EER for the /I/-regions was on average 

slightly above 20%, for the /a/-regions it was slightly 

below 20%, and for the /@/-regions was slightly above 

40%. The poor results for schwa are likely to be the 

result of the high degree of coarticulation – and hence 

increased intra-individual variation – experienced by 

this sound. The results also indicate that the marked 

decline of EER values from one to three Gaussians 

shown in Figs. 5 and 7 does not apply to single vowels, 

which suggests that single vowel categories can quite 

adequately be modelled with single Gaussians.  Fig. 9 

shows the user interface of VOCALISE in these 

experiments, which will be extended and more fully 

documented in future research.  

  

 

Figure 9: Display of VOCALISE main page during 

application of the SPARSE component. The Waveform 

display shows two tokens of /a/ which had been labeled 

in Praat and are automatically imported into 

VOCALISE by SPARSE.  

6 CONCLUSIONS 

VOCALISE makes it possible to apply classical 

automatic speaker recognition transparently and analyse 

the speaker‐discriminative information of acoustic 

phonetic data such as formant frequencies, fundamental 

frequency or sound durations. Whereas features 

pertaining to the spectral envelope such as MFCCs are 

powerful, they are also very sensitive to channel effects 

and recording quality, mostly data‐driven and less 

directly connected to the theory of speech production 

[11]. Processing phonetic data will be, in many ways, 

complementary and will offer insights into the voice 

comparison analysis that the classical automatic 

methods cannot. 
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